Nanometre optical coatings based on strong interference effects in highly absorbing media.
نویسندگان
چکیده
Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.
منابع مشابه
Thin-film Interference
Although much thinner than conventional optical interference coatings, nanometer-thick films made of optically absorbing materials can display strong interference effects. This new class of coatings shows promise for coloring and labeling, optical filters, tunable absorbers and emitters, and energy harvesting.
متن کاملEffect of carbon black content on the microwave absorbing properties of CB/epoxy composites
To prevent serious electromagnetic interference, a single-layer and double layer wave-absorbing coating employing complex absorbents composed of carbon black with epoxy resin as matrix was prepared. The morphologies of carbon black /epoxy composites were characterized by scanning electron microscope and atomic force microscope, respectively. The carbon black particles exhibit obvious polyarom...
متن کاملEnhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings
متن کامل
Absorption in multiple-scattering systems of coated spheres.
We derive formulas for rigorous transfer matrix calculations of absorption in multiple-coherent-scattering systems in which the scatterers are multiply coated spheres (not necessarily concentric). Any of the spherical coatings, cores, or host media may be composed of absorbing materials. For a nonabsorbing host media, the total absorption may be deduced from overall energy conservation. A more ...
متن کاملImproving the Accuracy of the Diffusion Model in Highly Absorbing Media
The diffusion approximation of the Boltzmann transport equation is most commonly used for describing the photon propagation in turbid media. It produces satisfactory results in weakly absorbing and highly scattering media, but the accuracy lessens with the decreasing albedo. In this paper, we presented a method to improve the accuracy of the diffusion model in strongly absorbing media by adjust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature materials
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2013